Almost complex structures on coframe bundle with Cheeger-Gromoll metric

نویسندگان

چکیده

In this paper we introduce several almost complex structures compatible with Cheeger-Gromoll metric on the coframe bundle and investigate their integrability conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Complex Structures on the Cotangent Bundle

We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.

متن کامل

Gromoll type metrics on the tangent bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...

متن کامل

Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...

متن کامل

Almost Positive Curvature on the Gromoll-meyer Sphere

Gromoll and Meyer have represented a certain exotic 7-sphere Σ as a biquotient of the Lie group G = Sp(2). We show for a 2-parameter family of left invariant metrics on G that the induced metric on Σ has strictly positive sectional curvature at all points outside four subvarieties of codimension ≥ 1 which we describe explicitly.

متن کامل

Old and New Structures on the Tangent Bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifoldM which generalizes Sasakian metric and Cheeger–Gromoll metric along a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe journal of mathematics and statistics

سال: 2022

ISSN: ['1303-5010']

DOI: https://doi.org/10.15672/hujms.1012725